process_model.py 4.63 KB
Newer Older
Arne Gerdes's avatar
Arne Gerdes committed
1 2 3
"""
Diese Klasse macht das Training des Models möglich
"""
4
import argparse
Arne Gerdes's avatar
Arne Gerdes committed
5

Arne Gerdes's avatar
Arne Gerdes committed
6 7 8 9
import cv2
import glob
import random
import numpy as np
tihmels's avatar
tihmels committed
10
import sys
tihmels's avatar
tihmels committed
11
import logging
Arne Gerdes's avatar
Arne Gerdes committed
12

13 14 15 16
from email_service import sendMail

logfile = 'logs/process_model.log'

Arne Gerdes's avatar
Arne Gerdes committed
17 18 19
"""
Erstellt und gibt das Log-File aus 
"""
20
logging.basicConfig(level=logging.NOTSET, format='%(asctime)s %(levelname)-8s %(message)s',
tihmels's avatar
tihmels committed
21
                    datefmt='%m-%d %H:%M',
22
                    filename=logfile)
23

Arne Gerdes's avatar
Arne Gerdes committed
24
"""
25
Argument Parser erlaubt Parameter für die Verarbeitung anzugeben.
Arne Gerdes's avatar
Arne Gerdes committed
26
"""
Arne Gerdes's avatar
Arne Gerdes committed
27

28 29
parser = argparse.ArgumentParser(description='Process Model Application')
parser.add_argument('--dataset', action='store', dest='dataset', default='resources/img_data/dataset/', help='path to dataset')
30
parser.add_argument('-i', action='store', dest='iterations', type=int, default=30, help='number of iterations')
31
parser.add_argument('-e', action='append', dest='emotions', default=['happy', 'neutral', 'surprise'], help='declare emotions that should be processed')
32
parser.add_argument('-p', action='append', dest='properties', help='pre-processing steps for logging')
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
parser.add_argument('--test', action='store_true', help='prevent writing new model to file system')
parser.add_argument('--csv', action='store_true', help='activate csv processing')
parser.add_argument('--email', action='store_true', help='activate email notifications')
arguments = parser.parse_args()
logging.debug(arguments)

dataset_path = arguments.dataset
iterations = arguments.iterations
emotions = arguments.emotions
properties = arguments.properties
csv = arguments.csv
email = arguments.email
test = arguments.test

"""
Liest Input Parameter 
"""
logging.info('Fisherface training started')
51

52 53
if email:
    sendMail('Fisherface training started')
Arne Gerdes's avatar
Arne Gerdes committed
54

55 56 57 58 59 60
def _get_faces_from_emotion(emotion):
    """
    Holt alle Dateien zu einer Emotion aus dem Dataset, mischt sie und teilt sie in ein Trainings- und Prognoseset.
    :param emotion: Die Emotion
    :return: training, prediction
    """
61
    files = glob.glob(dataset_path + '{}/*'.format(emotion))
Arne Gerdes's avatar
Arne Gerdes committed
62
    random.shuffle(files)
Arne Gerdes's avatar
Arne Gerdes committed
63 64 65 66 67 68 69

    """
    Mischt das Dataset in Trainings- und Vergleichsbilder im Verhältnis 80 zu 20 
    """
    training = files[:int(len(files) * 0.8)]
    prediction = files[-int(len(files) * 0.2):]

Arne Gerdes's avatar
Arne Gerdes committed
70 71
    return training, prediction

Arne Gerdes's avatar
Arne Gerdes committed
72

73 74 75 76 77 78 79 80
def image_preprocessing(image):
    """
    Preprocessing der Dateien
    :param item: Bild
    :return:
    """
    img = cv2.imread(image)  # open image
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # convert to grayscale
81 82 83
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    face = clahe.apply(gray)
    return face
Arne Gerdes's avatar
Arne Gerdes committed
84

Arne Gerdes's avatar
Arne Gerdes committed
85

Arne Gerdes's avatar
Arne Gerdes committed
86 87 88 89 90 91
def make_sets():
    training_data = []
    training_labels = []
    prediction_data = []
    prediction_labels = []
    for emotion in emotions:
92
        training, prediction = _get_faces_from_emotion(emotion)
Arne Gerdes's avatar
Arne Gerdes committed
93 94
        # Append data to training and prediction list, and generate labels 0-7
        for item in training:
tihmels's avatar
tihmels committed
95 96
            img = image_preprocessing(item)
            training_data.append(img)  # append image array to training data list
Arne Gerdes's avatar
Arne Gerdes committed
97 98 99
            training_labels.append(emotions.index(emotion))

        for item in prediction:  # repeat above process for prediction set
tihmels's avatar
tihmels committed
100 101
            img = image_preprocessing(item)
            prediction_data.append(img)
Arne Gerdes's avatar
Arne Gerdes committed
102 103 104 105
            prediction_labels.append(emotions.index(emotion))

    return training_data, training_labels, prediction_data, prediction_labels

Arne Gerdes's avatar
Arne Gerdes committed
106

Arne Gerdes's avatar
Arne Gerdes committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def run_recognizer():
    training_data, training_labels, prediction_data, prediction_labels = make_sets()

    fishface.train(training_data, np.asarray(training_labels))

    cnt = 0
    correct = 0
    incorrect = 0
    for image in prediction_data:
        pred, conf = fishface.predict(image)
        if pred == prediction_labels[cnt]:
            correct += 1
            cnt += 1
        else:
            incorrect += 1
            cnt += 1
    return ((100 * correct) / (correct + incorrect))

Arne Gerdes's avatar
Arne Gerdes committed
125 126 127
"""
Emotions Liste 
"""
tihmels's avatar
tihmels committed
128
fishface = cv2.face.FisherFaceRecognizer_create()
Arne Gerdes's avatar
Arne Gerdes committed
129
metascore = []
tihmels's avatar
tihmels committed
130

131
for i in range(1, iterations+1):
Arne Gerdes's avatar
Arne Gerdes committed
132
    correct = run_recognizer()
133
    logging.info("{} : {}%".format(i, int(correct)))
Arne Gerdes's avatar
Arne Gerdes committed
134
    metascore.append(correct)
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if i % (int(iterations/4)) == 0 and email:
        sendMail(str(i) + ' iterations done', body='up-to-date average: {}%'.format(np.mean(metascore)))

if csv:
    file = open("resources/csv/{}.csv".format('_'.join(properties).lower()), "w")
    for entry in metascore:
        file.write("{}\n".format(int(entry)))

    file.close()

logging.info("Fisherface training finished - {}% average\n".format(np.mean(metascore)))

if not test:
    fishface.write('img_data/models/detection_model.xml')
Arne Gerdes's avatar
Arne Gerdes committed
150

151 152
if email:
    sendMail('Fisherface training finished')